3.5.30 \(\int \sqrt {1-a^2 x^2} \tanh ^{-1}(a x) \, dx\) [430]

Optimal. Leaf size=143 \[ \frac {\sqrt {1-a^2 x^2}}{2 a}+\frac {1}{2} x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {PolyLog}\left (2,-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}+\frac {i \text {PolyLog}\left (2,\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a} \]

[Out]

-arctan((-a*x+1)^(1/2)/(a*x+1)^(1/2))*arctanh(a*x)/a-1/2*I*polylog(2,-I*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a+1/2*I*
polylog(2,I*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a+1/2*(-a^2*x^2+1)^(1/2)/a+1/2*x*arctanh(a*x)*(-a^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 143, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {6089, 6097} \begin {gather*} \frac {\sqrt {1-a^2 x^2}}{2 a}+\frac {1}{2} x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\text {ArcTan}\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 a}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - a^2*x^2]*ArcTanh[a*x],x]

[Out]

Sqrt[1 - a^2*x^2]/(2*a) + (x*Sqrt[1 - a^2*x^2]*ArcTanh[a*x])/2 - (ArcTan[Sqrt[1 - a*x]/Sqrt[1 + a*x]]*ArcTanh[
a*x])/a - ((I/2)*PolyLog[2, ((-I)*Sqrt[1 - a*x])/Sqrt[1 + a*x]])/a + ((I/2)*PolyLog[2, (I*Sqrt[1 - a*x])/Sqrt[
1 + a*x]])/a

Rule 6089

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*((d + e*x^2)^q/(2*c*q
*(2*q + 1))), x] + (Dist[2*d*(q/(2*q + 1)), Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x]), x], x] + Simp[x*(d +
 e*x^2)^q*((a + b*ArcTanh[c*x])/(2*q + 1)), x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0]

Rule 6097

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*(a + b*ArcTanh[c*x])*(
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 - c*x]/Sqrt[1 + c*x
])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 - c*x]/Sqrt[1 + c*x])]/(c*Sqrt[d])), x]) /; FreeQ[{a, b,
 c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]

Rubi steps

\begin {align*} \int \sqrt {1-a^2 x^2} \tanh ^{-1}(a x) \, dx &=\frac {\sqrt {1-a^2 x^2}}{2 a}+\frac {1}{2} x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)+\frac {1}{2} \int \frac {\tanh ^{-1}(a x)}{\sqrt {1-a^2 x^2}} \, dx\\ &=\frac {\sqrt {1-a^2 x^2}}{2 a}+\frac {1}{2} x \sqrt {1-a^2 x^2} \tanh ^{-1}(a x)-\frac {\tan ^{-1}\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right ) \tanh ^{-1}(a x)}{a}-\frac {i \text {Li}_2\left (-\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}+\frac {i \text {Li}_2\left (\frac {i \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 117, normalized size = 0.82 \begin {gather*} \frac {\sqrt {1-a^2 x^2} \left (1+a x \tanh ^{-1}(a x)-\frac {i \left (\tanh ^{-1}(a x) \left (\log \left (1-i e^{-\tanh ^{-1}(a x)}\right )-\log \left (1+i e^{-\tanh ^{-1}(a x)}\right )\right )+\text {PolyLog}\left (2,-i e^{-\tanh ^{-1}(a x)}\right )-\text {PolyLog}\left (2,i e^{-\tanh ^{-1}(a x)}\right )\right )}{\sqrt {1-a^2 x^2}}\right )}{2 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - a^2*x^2]*ArcTanh[a*x],x]

[Out]

(Sqrt[1 - a^2*x^2]*(1 + a*x*ArcTanh[a*x] - (I*(ArcTanh[a*x]*(Log[1 - I/E^ArcTanh[a*x]] - Log[1 + I/E^ArcTanh[a
*x]]) + PolyLog[2, (-I)/E^ArcTanh[a*x]] - PolyLog[2, I/E^ArcTanh[a*x]]))/Sqrt[1 - a^2*x^2]))/(2*a)

________________________________________________________________________________________

Maple [A]
time = 4.12, size = 152, normalized size = 1.06

method result size
default \(\frac {\sqrt {-a^{2} x^{2}+1}\, \left (a x \arctanh \left (a x \right )+1\right )}{2 a}-\frac {i \arctanh \left (a x \right ) \ln \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a}+\frac {i \arctanh \left (a x \right ) \ln \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a}-\frac {i \dilog \left (1+\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a}+\frac {i \dilog \left (1-\frac {i \left (a x +1\right )}{\sqrt {-a^{2} x^{2}+1}}\right )}{2 a}\) \(152\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a^2*x^2+1)^(1/2)*arctanh(a*x),x,method=_RETURNVERBOSE)

[Out]

1/2*(-a^2*x^2+1)^(1/2)*(a*x*arctanh(a*x)+1)/a-1/2*I/a*arctanh(a*x)*ln(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2))+1/2*I/a*
arctanh(a*x)*ln(1-I*(a*x+1)/(-a^2*x^2+1)^(1/2))-1/2*I/a*dilog(1+I*(a*x+1)/(-a^2*x^2+1)^(1/2))+1/2*I/a*dilog(1-
I*(a*x+1)/(-a^2*x^2+1)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)*arctanh(a*x),x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*x^2 + 1)*arctanh(a*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)*arctanh(a*x),x, algorithm="fricas")

[Out]

integral(sqrt(-a^2*x^2 + 1)*arctanh(a*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \operatorname {atanh}{\left (a x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a**2*x**2+1)**(1/2)*atanh(a*x),x)

[Out]

Integral(sqrt(-(a*x - 1)*(a*x + 1))*atanh(a*x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a^2*x^2+1)^(1/2)*arctanh(a*x),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \mathrm {atanh}\left (a\,x\right )\,\sqrt {1-a^2\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(a*x)*(1 - a^2*x^2)^(1/2),x)

[Out]

int(atanh(a*x)*(1 - a^2*x^2)^(1/2), x)

________________________________________________________________________________________